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ABSTR,ACT 

Using Lagrange inequality multipliers, we derive rigorous upper 

bounds on cross sections for the process pN - P ‘I- + X, in the context 

of the parton model. For definiteness, we work with a colored quark 

version of the parton model, but our results are easily generalizable 

to other versions. The constraints we impose are given by our knowledge 

of yWz for protons and neutrons. Then, in a separate problem we add 

further constraints derived from considerations of the recent neutrino 

and antineutrino data from Gargamelle. Our upper bounds fall below the 

Brookhaven data. We conclude, therefore, that at least one of the following 

statements is true: 

1) The experimentally observed cross section is not the scaling 

limit for the process. 

+ - 
2) The Drell-Yan formula for pN - I P + X must be modified. 

3) The colored-quark parton model is wrong. 
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I. INTRODUCTION 

During the last few years, parton models for weak electromagnetic 

and even for strong interactions have received widespread attention. 1, 2 

Unfortunately, the model has not been formulated in a mathematically 

precise and physically consistent way, and consequently, it is obscure 

just what the “parton model” really is. However, certain general features 

are common to nearly all discussions: for example, that the partons 

are constituents of hadrons having a point-like coupling to the photon. 3 

From these general features follow the most straightforward consequences 

of the model: the general forms for the leptoproduction structure functions, 

and certain sum rules and inequalities which follow from the general 

form. 
4 

On the other hand, the least believable consequences are those 

predictions which depend on very specific assumptions cancerning the 

forms of the probability distributions for each parton. 5 The introduction 

of such assumptions has usually been motivated by a desire to get some 

handle on the implications of the parton model for various experimental 

6 processes. However, another approach is possible which may be more 

meaningful. Regarding some data as constraints among the parton 

distribution functions, one often may obtain rigorous upper or lower 

bounds for other cross sections. Aside from its intrinsic theoretical 

interest, such inequalities, when applied to processes not yet measured 

may be useful to experimentalists designing new experiments. Once 
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the data have been collected, the bounds provide rigorous tests of 

whether the data are compatible with the general, underlying features 

of the model. 

In this paper, we utilize a general mathematical technique for 

obtaining such bounds. The method involves the introduction of Lagrange 

multipliers for both equality and inequality constraints. Inasmuch as a 

pedagogical presentation of the mathematical theory has already been 

given, 
7 we restrict ourselves in this paper to illustrating the method 

for the process of heavy lepton pairs produced in hadronic collisions. 

It will be apparent, however, that our method is applicable to a wide 

range of physical phenomena. 

In parton models, as shown by Drell and Yan, 
8 

the cross section 

in the deep inelastic limit for production of a heavy lepton pair in 

proton-proton collisions is given by 

1 

4dc 
Q 

4 2 
-2=3vru T 
dQ 

$ r e: [qi(x)gi(7/x)+qi(x)qi(7/x)l 
i 7 

1 
8 2 

=-?rLy 7 
3 

I 
~~e~qi(x)ii(7/x) (1) 

1 

where T z Q2/s, ei = charge of parton of type i, 

x = longitudinal fraction of proton’s momentum carried by parton, 

and qi(x) = probability of finding a parton of type i at x in a proton. 

The derivation of this formula seems to neglect strong interactions 
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(such as .wee parton exchanges) between the protons. Whether such 

effects modify the cross section is an open question. 9 
We will return 

to discuss this point later, however, it is certainly in the spirit of 

the parton model that interactions among wees do not alter the form of 

the hard parton distributions. Consequently, the effects of the strong 

interactions might be essentially to multiply the entire right hand side 

by some overall normalization constant, without altering the shape of 

the cross section. These questions will be discussed in more detail elsewhere. 

In the following, we shall derive upper bounds on this cross section 

under a variety of constraints on the parton distributions which arise 

from data on the related cross sections for deep inelastic leptoproduction. 

The outline of the paper is as follows: In the next section, we present 

the solution of a mathematical problem which contains the essential 

features of the physical problem. In Sec. III, we derive an upper bound 

on PP -+ p+p- X and on pn + k’.,X based on the electroproduction 

data from SLAC. In Sec. IV, we discuss further constraints 

imposed by neutrino cross sections. This section is subdivided into a 

phenomenological discussion of existing neutrino data (and what we can 

expect in the next few years) followed by the mathematical solution of 

the problem posed. Finally, we conclude in Sec. V with a discussion 

of the implications of our results and suggestions for future work, 

The sequence of figures is fairly self-explanatory without reference 

to the text. Readers interested only in our results and not how they are 
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derived, are advised to simply read the figure captions and concluding 

remarks in Sec. V. 

II. PROTOTYPICAL PROBLEM 

We begin the discussion with a mathematical prototype of the 

problems which will concern us later: 

Maximize the functional 
1 

J= $ [PWP (71x) ‘P (X)P(T/X) 1 
T 

(2) 

subject to the following constraints on the functions p and p : 

P(x) +P(x) = P(x) [ P(x,) a given function 2 01 

p(x) 2 0, P(x) 2 0. 

Although not really necessary, for pedagogical purposes we will 

solve this problem by the method of Lagrange multipliers. Since we 

wish to emphasize the role of the positivity constraints, we use the 

equality constraint to eliminate one of the variables, say, p(x). So 

our problem is to maximize 

1 

J=kqi I[ I i p(x) P(7/x) - P(T/X) + P(x) -p(x) P(T/X) (3) 

T 

subject to 0 5 p(x) 5 P(x). 

These inequalities can be combined in the requirement p(x)[ P(x) -p(xg’ 0. 
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Introducing the inequality multiplier X (x) 2 0, we consider the auxiliary 

functional 

.&if= J+2 
I 

$ X(x) P(X) [ P(x) - p(x) 1 
7 

(4) 

The variational derivative is 

bLz 2 - =- 
6Pk) x 1 Ph/x) - ZP(T/X) + X(x) [P(x) - 2p(x,]~=o. (5) 

To discuss this equation, it is convenient to classify points in pairs 

(x9 T/X). 

Boo: p(x) = 0. ph/x) = 0 - 

Boi: p(x) = 0, P(71X) = P(T/X). 

BiO: p(x) = P(x), p(71x) = 0. 

Bjl: p(x) = P(~x) p(7/x) = P(T/X). 

I: 0 <p(x) < P(x), 0 < p(7/x) < P(7/xL 

The case when xe1, but T/X is in one of the other sets can be easily 

ruled out by settilig X(x) = 0 in Eq. (5). 

In Boo and Bii, it is easy to show that X(x)P(x) = - P(T/x) and hence, 

incompatible with the requirement x(x) 2 0. In Bol and BiO we find 

X(x) P(x) = + P(T/X), 

so these critical points are candidates for local maxima. In either 

case, the contribution to J is the same: 

FP(T/X) P(x) 
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Finally, consider the set I. Here, we are instructed to set 

h(x) = 0 and X(7/x) = 0, so 

p(x) = i P(x) and p(-~/x) = s P(~/x). 

Hence, the value of the integrand in this case is smaller than in Bol 

and B 
10’ 

namely 

; $ P(7/x) P(x) . 

Actually, the set I can be excluded without evaluating the integrand, 

because, by considering the second differential, it can be shown to be 

a saddle point. To demonstrate this, however, requires consideration 

of the tangent cone, which will be unfamiliar to most readers and, 

since it is unnecessary here, it has been relegated to Appendix A. 

In the problems of physical interest considered below, p(x) and 

p(x) correspond to quark and antiquark distributions. As in the example 

above, there will be a degeneracy of the maximum value at each point 

x(BO1 or BiO 1. Hence there are an infinity of functions p, all leading / 

to the same maximum value for J. 

An important point for subsequent applications has to do with another 

type of constraint in the form of a sum rule 
1 

N = 7 I 
dx [P(X) - PWI (6) 

7 
(For 7 = 0, this has the standard form of a quantum number constraint. ! 
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Given a value for the left hand side of (6), one can incorporate the 

constraint in a straightforward way. Since the mathematics is some- 

what more involved, and since the determination of the values of N 

requires further assumptions than the general framework of the parton 

model, we shall not include such constraints. For many purposes, the 

omission of the constraints is inconsequential, since, because of the 

imfinite degeneracy referred to above, a wide range of values of N7 

can be accommodated without changing the value of the bound for J. 

III. ELECTROPRODUCTION BOUND 

We will now take up a problem of direct physical interest. For 

definiteness, and because it is physically interesting, we shall derive 

our results for the colored quark version of the parton model. Later 

we shall comment on the extension of our results to other versions of the 

parton model. In the uncolored quark model, the structure functions for 

deep inelastic electroproduction from a proton or neutron are given byi 

f yzp (x) = $ u(x) + $ D(x) f +(x) 

f y(x) = $ D(x) + $ U(x) + is(x) 
I 

where 

U(x) = u(x) + i(x) 

D(x) = d(x) + d(x) 

S(x) = s(x) + E(x) i 

(7) 

(8) 
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Here, u, d, and s are the usual triplet quark distributions. In the 

colored quark model, they are three times the distribution function 

for each color. There is excellent data 
10 

available from SLAC for 

these distributions for a wide range of x (0.04 5 x 5 1). The question 

arises: with no further assumptions, what is the maximum rate for 

PP - p+p- X given this data? [Recall Eq. (I).1 

Although the SLAC data provides only two constraints, it is 

illuminating to solve the problem in 2 stages. First, we will imagine 

that someone has presented us with the three functions U(x), D(x), and 

S(x). (See, in particular, Sec. IV. ) We shall find the maximum given 

these three constraints. Then we shall find the largest value possible 

subject only to the two constraints provided by the electroproduction 

data by varying the maximum derived for three constraints. 

To be explicit, we went, to maximize (for colored quarks) 

1 

Q 
4du 4 2 

-=--rra T 
dQ2 ? 

u(x) U(~/X)+U(T/X);(X)] 

7 

+ $ [d(x) ;~(T/x) + d(T/x)d(x)] 

+ ; [s(x) &T/X) +s(./x,S(x, It (9) 

given the three functions in Eq. (8). (Actually, our bounds will give 

us more information: since the integrand of (9) is proportional to the 

doubly differential cross section, we will also have bounds on this quantity. 
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See below. ) This problem is clearly the direct sum of three problems 

precisely of the type considered in the proceding section. The maximum 

is therefore given by 
1 

Q 4A!c= 4ircr2T 
dQ2 9 7 (10) 

Before proceeding, it is interesting to pause at this point to inquire 

how large the bound would be in a model in which there were no strange 

quarks, S(x) = 0. Then, in terms of the electroproduction structure 

functions, we have 

u = g (4,fY,p - f’z” ) 

D = ;(4f ‘2” - f’,p, 

so the bound can be evaluated from the data. [ For uncolored quarks, 

the bound would be three times as large as the value given in Eq. (lo). 1 

We present this bound as the dashed line in Fig. 1. (Comparisons with 

data will be discussed presently. ) 

In general, of course, we cannot neglect strange quarks, so we 

regard U, D, and S as variables and maximize Eq. (10) subject to the 

two constraints, Eq. (7), as well as the positivity requirements, 

U 2 0, D 2 0, S 2 0. We could solve this problem by considering U, D, 

and S as independent variables, but it is easier to solve for the two 

variables U and D, in terms of S. 
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u = ; [4f y - f?] -is(x) 

(12) 

D = $ [4fYn 2 - fvzpl -+W 

The positivity requirements then become simply 

0 5 S(x)’ Min 3[4fy-f T] ,3[4fv:- fv;] (13) 

The data show 

f yp 2 f ‘2” for all x, so Eq. (13) can be simply written as 
2 

0 5 S(x)’ 3[4f;n- f? I . (44) 

Inserting Eq. (12) into (iO), we want to vary S(x) subject to the 

inequality constraint (14). Introducing the inequality multiplier X(x), 

we consider the auxiliary functional 

1 
L?= ,+$ 

I 

d< h(x) S(x) [3(4:f ‘2” - f Y2p) - S(x)] (15) 

where 

4 U(x) U(T/X) + $ D(x) D(T/x) + is(x) S(T/X)] (16) 

and where U and D are given by Eq. (12). 

Then the variational derivative gives 

cz 2 
- = - - fy (;,+ $s(;)+x(x) [3(4fY-.f;p) -2s(x)] ;io) 6 S(x) 5x 

I I 
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The rest of the analysis proceeds as in our first example in Sec. II. 

The interior, when 0 < S(x) < 3(4fy- fy2’), is even more easily 

disposed of than before, since in this case, X(x) = 0 implies 

S( ;) = ;f ?$7/x). 

But, from (14) this implies 

$fYzp 5 3(4E yz” - f T), 

or simply 

fYn 
3<‘2 
8 fyp 

2 

In fact, this last inequality does not seem to be satisfied anywhere by the 

data, so we may disregard this set. (We could also eliminate it by 

consideration of the second differential without reference to the data. ) 

We have then four remaining cases to examine 

B oo: S(x) = S(T/X) = 0 

Bol: S(x) = 0, s(i) = 3 [4f r (71X) - fT(T/X)] 

B 1o: S(x) = 3 4fYF(x) -f 
C 7 (x$ S(T/X) = 0 

Bil: S(x) = 3 [4.f’; (x) - f T(x)], S(-r/x) = 3[4fYf(./x)- fT(T/X)] 

It is easy to check that Bol and B 
10 

are incompatible with the requirements 

X(X) 2 0, but that Boo and Bil are acceptable. It turns out that both of 
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these sets, BOO and B 11, are local maxima and hence, both must be 

evaluated and the larger chosen to give the global maximum. Thus 

1 

4&L, Q 4 na2T dx 

dQ2 9 I 
x M(x) 

7 

(19,) 

where 

M(x) = Max 

I 
f y,ptx) - f,‘z” cx([fy,pwx, - fy,“(T/X)] 

,‘fYP (x) fYP(-r/x) 
(Boo’ 

5 2 2 
(20) 

4 [fy;(x) - fT,x,][f y,p(T/X) - fY(T/X)l 

(Bi1) 
- f.y,p(x) 4fyzn(&) - f;pwx) 1 

The first alternative (Boo) for the integrand corresponds to S(x) = 

S(T/X) = 0; the second (Bll), to D(x) = D(-r/x) = 0. The upper bound 

so obtained has been evaluated from the SLAC data and is plotted in 

Fig. 1. (With uncolored quarks this upper bound would be a factor of 

3 higher everywhere. ) It is important to note that the doubly differential 

cross section, 

d20 

dQ2dqL 

where qL is the longitudinal momentum of the lepton pair is proportional 

to the integrand of the Drell-Yan formula. 
8 

Hence, expression (20) 

when multiplied by the relevant kinematic factors provides an upper bound 
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on this cross section. 

We would now like to compare our bound with the Brookhaven data. 

Since this experiment is done on a uranium target, we cannot directly 

compare our bound on pp - ~++EL-X with it, since some of the time the 

incoming proton hits a neutron. Neglecting nuclear effects and treating 

the target as a mixture of non-interacting protons and neutrons, we can 

calculate an upper bound on pn * pf~-X, and take the weighted average 

of the two bounds as the bound on the Brookhaven process. Strictly 

speaking, this is not really the bound we want. Rather, we should bound 

the weighted average cross section on protons and neutrons, and not 

average the bounds on the proton and neutron cross sections. In some 

problems, these two quantities are identical, and in the problems con- 

sidered here their difference is negligible. For this reason, and because 

the separate proton and neutron bounds will be useful in conjunction with 

experiments on other nuclear targets, we have chosen to proceed by 

averaging the bounds. 

The derivation of the bound for pn * ~+p- X which is similar to the 

one discussed above is presented in Appendix B, and the result is plotted 

in Fig. 2. We then have for the upper bound of the per nucleon cross 

section on a nuclear target: 

Q 4 + (pu - ,J+,L-X) 2 (;> Q” f$- (pp - t.t+~-X) T(~)Q4~-~+~-W 
dQ 

where, for Uranium, Z = 92, N = 146, and A = 238. 
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The Brookhaven data, as well as the upper bound is presented in 

Fig. 3. Curve A is the weighted average bound we have described. 

Curve B is the same bound, corrected for the detection efficiency of the 

Brookhaven experiment--that is, the fact the lepton pairs with a laboratory 

longitudinal momentum < 12 GeV/c are not detected. Curve C is the 

data.~ Notice that the upper bound falls substantially below the data 

over a rather wide range of -r. This means that the usual colored 

quark parton model cannot possibly explain this data. Furthermore, the 

bound derived using the uncolored quark parton model is only a factor 

of 3 larger and falls quite close to the data. Since the quark distributions 

which realize these bounds are rather unphysical (or at least unorthodox), 

the imposition of other constraints ought to lower the bounds even 

farther. Therefore, we proceed, in the next section, to investigate 

the bounds which result when we constrain the distributions (especially 

those of the antiquarks) by using neutrino data. 

IV. THE INCLUSION OF NEUTRINO DATA 

(A) Phenomonology 

It is well known’ that the quark model can be tested not only in 

electroproduction but also in the deep inelastic scattering of neutrinos 

and antineutrinos from protons and neutrons. Indeed, measurements 

of the latter weak processes will determine not only the validity of the 

model but also the actual values of each of the six quark distributions, 



-16- NAL-Pub-74/35-THY 

u, ;, d, d, s and s. Basic tests of the model can be made, in principle, 

from the fact that more than six experimentally measurable distributions 

are determined by the quark distributions. (For completeness, we have 

collected in Appendix C some kinematical relations for leptoproduction 

in the quark parton model. ) 

Unfortunately, the cross sections for these weak processes are so 

small that, even at NAL, it will be some time before such data are 

available. Just as at Gargamelle, the data will first be available on 

neutrino scattering from heavy nuclei. Eventually, .~p -C TV X and 

VP -f p+X wiB be measured in the 15’ bubble chamber but, if neutral 

currents exist, then these cross sections will not be known until the 

detection efficiency for muons is significantly improved. 12 Consequently, 

it will be several years before the quark distributions are known and 

unique predictions can be made for pp + p*+p.*- X. 

Neutrino scattering from a nucleus of equal numbers of protons 

and neutrons allows one to determine (up to nuclear corrections) the 

sum (vp - p) + (vn - @Xx) and hen ce, u + d and (u + d) may be approxi- 

mately determined from the doubly differential cross section 1 see, 

e.g., Ref. (13)1. 

drVd 71 duvp - = + do’” - 
tidy - G2ME dxdy dxdy I [ 

= 2x G: (x)(~-~)~+G_Y (xl -1 

d 1) 

G; =;+d , Gr = (u+d)cos2’3c+2ssin26c 
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where E = neutrino lab engrgy, q2 = (V - p) momentum transfer 

and Y = E - & 
P 

= lepton energy loss. 

To the extent that we can neglect S sin2 ec antineutrinos provide a 

consistency check, since the quark and antiquark distributions are simply 

interchanged. Alternatively, given the data for the singly differential 

cross sections, 

dz+ daVn and doYP do’ 
dx dx dx+----- dx ’ 

one can again determine u + d and ; + d. A first attempt to do this has 

been made at CERN using the Gargamelle heavy liquid bubble chamber. 

The values of u + d and ; + d so obtained are reproduced in Fig. 4. 13 

These data, together with the SLAC electroproduction data, provide 

four constraints on the six quark distributions. So one can ask: What 

is the maximum rate allowed for pp -r ~+u- X which is compatible with 

these four constraints plus positivity of the probability distributions? 

We shall solve this problem below, but the reader should remember 

that there are good reasons to doubt the validity of the distributions 

obtained from Gargamelle. Until better neutrino data are available, 

our discussion is primarily illustrative of how such a problem may 

be solved. 
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Before beginning the mathematical discussion, let us point out 

some objections to taking the distributions presented in Fig. 4 too 

13 
seriously. In the first place, we are urged to consider the data as 

only preliminary, and there are clear indications that many of the 

events included in arriving at these distributions are not, in fact, in 

the scaling region. One certainly does not have scaling in x, and the 

curves are derived with the hope that the Bloom-Gilman variable x’ 

allows one to smoothly extrapolate from the nonscaling region to the 

scaling limit. If, on the contrary, we accept the distributions given 

by Perkins as valid, we can combine them with the data from electro- 

production 
10 to obtain the distributions U = u + ;, D = d + d, and 

s=s+s. (See Sec. B below for details. ) The resulting probabilities 

times their momentum fraction x are presented in Fig. 5. One sees 

that, despite large errors, the strange quark distributions are 

systematically negative for x 5 0. 35 and for x 2 0.65. This is another 

indication that we should not take the functions in Fig. 4 too literally. 

Furthermore, if one were to accept the suggestion of Figs. 4 and 5 that 

there are no ; or d quarks for x z 0.35 and neither s nor s for 

x 2 0.65, then the predicted cross section for pp - t~+p-X would be 

zero for 7 > (0.65)’ = 0.42. 
14 

Consequently, the observation of any 

signal for 7 2 0.4 (as seen in Ref. 11) provides evidence that either the 

muon pairs have not scaled or the antiquark distributions suggested 

15 
by Gargamelle data are simply too small. 
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In the absence of reliable data, it may be useful to estimate how 

large the antiquarks must be by constructing a simple model. Suppose 

that, for x 2 0. 5, we can neglect strange quarks, and that the distributions 

for nonstrange quarks are given by u(x) = Cu(i-x)3 and d(x) = Cd(l - x)~, 

as expected from the Drell-Yan-West relation and the dipole falloff of 

the proton form factor. We suppose, also, that the antiquark distributions 

may be similarly parameterized: ; 3 16 = Cu(i-x)3 and d = C,(i-x) . 

(It seems likely that the ratios Cu/ Cu and cd/ Cd would be small. 17) 

For such a model, we find for pp - p.+p-X (with colored quarks ) 

4 do Q- 
dQ2 

(22) 

where to a good approximation, the function f( 7 ) is given by the expression 

f(T) = -$ 7 (1-T; [1+~(~)Z+~(~)4+..,], 
(1+-r) 

(23) 

Setting the bracket in Eq. (22) equal to one, we plot $ n cu’f( -r) in Fig. 6. 

One sees from the figure that, to account for the observed signal for 

0.6 5 T 5 0.8, it must be that the bracket in Eq. (22) is on the order 

of 0.1. To account for a- distribution as indicated in Figs. 4 and 

5, we would have to have Cu + Cu= 4 and Cd + cd% 1. It then follows 

that we can neglect the down quarks and find a ratio Cu/ C, z 0.04. 

Hence, with only 4% antiquarks, the signal might be accounted for at 

large 7. At smaller 7, the model would require a ratio perhaps ten 
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times as large. This model illustrates what a sensi~tiz;e measure of 

antiquarks lepton pair production is. 

Before leaving this section, we reiterate that, for quite some time, 

the only neutrino data available will be in scattering from heavy nuclei, 

so that only the sums u + d and ; + d will be know. The question we 

now turn to is the natural one: How do the additional constraints from 

such data restrict the upper bound for pp * p+p-X? 

(B) Derivation of the Bound 

In niathematical terms, our problem may be stated as follows: 

Given data on U, D, S, and a E ; + d, what is the maximum rate for 

PP -, P+~-x, assuming this cross section is given by the Drell-Yan 

formula, Eq. (i)? The solution to this problem is logically straight - 

forward but is not representable in an analytical, closed form for all 

functions U, D, S and 6. Consequently, we will illnstrate the technique 

with a specific, simplified representation of the data in mind, but the 

methods employed and problems encountered will be sufficiently general 

to enable one to solve the problem in any case. Fcr our model, we choose 

the “data” given in Fig. 7. This “data” is chosen to essentially agree 

with the Gargamelle data for x > 0.3 but is modified for x < 0. 3 to 

agree more closely with our theoretical prejudices. 
18 

As remarked 

earlier, such a model for the data gives a cross section of zero for 

7 > 0.4. For 7 < 0.4, the upper bound to which we shall be lead is 

plotted as curve A in Fig. 8. On the other hand, the bound is extremely 
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sensitive to the small magnitude of the antiquark distributions. If we 

relax the “data” somewhat and arbitrarily choose S = f D and Q = $D 

for x > 0.3, then one obtains the bound labelled curve B in Fig. 8. 

One of the complications of’ldata” such as.that of Fig. 7 is that the 

four constraint equations are not all linearly independent for all x. 

The “data” of Fig. 7 naturally divides itself into three regions Ri 

defined as follows : i9 

RI =(xlU, D, S,,6 f 01 

R2 ={x 1 U, D, S $ 0; ti= O} 

R3 =b I U, D # 0; S = 6= 0) 

In Region RI, we have 4 independent constraints on 6 unknown 

distributions. In region R2, we have ; = d = 0 and 3 independent 

constraints on the remaining 4 unknowns u, d, s, and s. Indeed, we 

have simply u = U, d = D, so the only remaining ambiguity concerns 

the specification of the strange quark distributions. In region R3, 

we have ; = d = s = s = 0 and hence, u = U and d = D. Thus there is 

no ambiguity at all. [ The values of U and D here are precisely those 

given in Eq. (11). 1 In the region RI, there is the same ambiguity 

concerning strange quarks as in region R and, in addition, a five- 
2 

fold ambiguity among the nonstrange quarks, The logical alternatives 

are delineated in Table I, and, in the last column, we indicated which 
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alternatives are compatible with the data presented in Fig. 7. In the 

last case, V, no nonstrange distribution vanishes, and there remains 

an ambiguity in their values. 

It is useful in the following to classify points in the interval 

7 5 x 5 1 in pairs (x, 7/x). If XE RI and 7/x E Rj, we will say that the 

pair (x, -r/x) is in the set Ri iX Rj. To avoid classifying each pair 

twice, we can without loss of generality, restrict x to the region 

fi<x<i, sothat +F. Then it is easy to classify pairs, 

depending on the value of ‘T and the various permissible ranges for x 

and r/x. The classification so obtained is presented in Table II. 

We will obtain the maximum by the method of Lagrange multipliers, 

but first it is convenient to abbreviate our notation. We abbreviate 

the first three constraints. 

by 

u=u+u, D=d+;l 

Qi = qi + 6. i =i, 2, 3 
1 

s=sis 

and the fourth we choose to express as 

Introducing Lagrange multipliers X. i, x (for the four equality constraints) 

and six inequality multipliers r) i, - n i 2 0 (for the positivity constraints 

qi, ii > 0), we consider the auxiliary function 



-23- NAL-Pub-74/35-THY 

having extracted the factor ef/x from the definition of the multipliers 

Here 

or 

(25) 

The latter form for F is more useful from the point of view of the 

classification of pairs (x, 71x). 20 

Then the variational equations become 

6Az 
6cli(X) =ti(=/x) -Xi(n)+ rji(x) = 0 (26) 

62x X.(x, 
6$(x) = qp/x) - Xi(X) - +;ii(x) =o (27) 

where we have introduced 

(28) 

In Appendix D, we discuss the second differential and tangent cone and 

will refer to it from time to time in order to identify certain critical 

points as saddle points rather than maxima. 
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The rest of the discussion concerning the values of the distributions 

is straightforward, but tedious, The reader uninterested in details can 

simply skip to Table III where the value of the integrand in each case 

is presented, and to the paragraph following Eq. (45) in the text. 

Earlier, we indicated the possible values of the distribution 

functions for each of the three sets Ri, R2, and R3. Given the 

distributions at x, we can use the variational equations, Eq. (26) and 

(27), to obtain necessary conditions on the distributions at the reciprocal 

point, r/x. For example, XE R2 implies u(x) = U(x), d(x) = D(x) and, 

since u and d are non-zero, we must have n u(x) = rid(x)) = 0, so that 

(from (26)) 

?T/X) = Xu(x), ;i(T/X, = X,(x) (29) 

The case when xc R1 is more complicated, since we have the five 

possibilities indicated in Table I. (In this case, as in R2, the only 

constraint on the strange quarks is s + s = S, so we postpone discussion 

of strange quarks until after discussing the non-strange distributions. ) 

We will restrict our discussion to the three cases allowed by 

Fig. 7 (I, III, and V) since the others will very likely be excluded by 

reliable data as well. In these three cases, we have u # 0, d # 0, and 

hence, nu = nd = 0. Consequently, we find, a6 in R2, that Eq. (29) 

holds. (Since Q = ; + d at every point, only one of these two multipliers 

is independent. ) For case I, we find that 
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i(x) = d(T/x) - &T/X) 

~,(x, =;(T/x, - U(T/X) +$ [d(T/x) - &T/X)] 2 0 (30) 

For Case III, we find 

Xbn) _ -- 
4 

U(T/X) - l3TIX) 

id(x) = 4111(7/x) - ;(T/x) I +d(~/x) - d(T/x) 2 0 (31) 

For case V, we find 

htx) = ~[u(T/x) - u( T/X)] = d(T/X) - %s/x) 

and 

u=$[6~+~-2Ql 20 

;=&[4U-D+2& 20 

d=$ [9~+4~ -8Ql 2 0 

d=&[~-4~+841 20 

(32) 

where the arguments of all the functions are evaluated at r/x. Note 

how in each case, the hypothesis as to the values of the distributions 

at x has led to necessary inequalities involving the distributions at the 

reciprocal point, -r/x. 

As remarked earlier, in sets other than R3, the strange quark 

distributions are ambiguous. We turn now to the resolution of this 

ambiguity. The only constraint is s(x) +s(x) = S(x). We must consider 

3 cases: 
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Case A 

Case B 

Case C 

Suppose S(x) = 0, Sk) = S(x) > 0. 

Then n,(x) = 0 + i(T/X) =xxs(x). Also, 

xqs(x) = S(T/X) - S(T/X) 2 0. (33) 

Suppose s(x) = 0, S(x) = S(x) > 0. 

Then is(x) = 0 $ S(T/X) =xxs(x). Also 

xqs(x) = S(T/X) - SC-i/X) 2 0. (34) 

Suppose s(x) # 0, S(x) # 0. 

q.(x) = Qx) = 0 - S(T/X) = s (-r/x) = XXs(X) = +7/X). 

(35) 

Let us now discuss the various sets Ri E9 Rj; first, for strange 

quarks only. In sets R2 I% R2, R2 EIRi, and RIIX[ R , we must subdivide 
1 

the possibilities for the strange quarks into sets denoted by the obvious 

notation, A@ A, A @ B, A E C, etc. 

A@ A is impossible, since T/X EA Y) x;,(x) = - S( T/X) 2 0, which is 

not true. A m B is allowed, since T/XE B3xGs(x) = S(T/X) 2 0. 

Similarly, one can show that A I8I C, B m B, B @ C, are impossible but 

B @ A, and C i8 C are allowed. However, as shown in Appendix C, 

C E C is only allowed by considerations of the first derivative, whereas 

the second differential can be positive, negative, or zero. Thus, C @ C 

is a saddle point, not a maximum. 

In summary, then, the only two possible maxima are A GY B and 

B @I A. It is unnecessary to distinguish these two possibilities, since 

in either case, the integrand takes the same value: 
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s(x) &T/X) + S(x) S(T/X) = S(x) ST/X). 

Of course, in all cases other than these three, R2 B R2, R2 B R1, 

and R1 B Ri, the contribution from strange quarks t&he maximum is 

zero. 

Having resolved the ambiguity of the strange quarks, we turn to 

the somewhat more complicated question of the values of the nonstrange 

quark distributions. Clearly, for R3 B R3 and R3 @ R2, the integrand 

is zero. For R3?8 Ri, we will consider only the three cases I, III, 

and V, which are compatible with data like Fig, 7: 

R3 Pp R1 (I): D(x) 2 4U(x) (36) 

R3 EZRR1 (III): 4U(x) z D(x) (37) 

R3iB Ri (V): 4U(x) = D(x) (38) 

Clearly, there is no ambiguity remaining in the value of the inte- 

grand, since only the second case, R3 @RI (III), is compatible with 

Fig. 7. 

The case R2 B R2 is unique (for nonstrange quarks), so no further 

discussion is necessary. The case R2 B R1 is more complicated; however, 

the constraints on the nonstrange quarks are precisely as in R3 @ Ri. 

Finally, we come to the most complicated case, R+ @ R1, which sub- 

divides into R1(J) m RI(K) (J, K = I, III, or V). 

RI(I) @RR1(I): t 
U = -U + $D - -!j G 2 0, at both x and T/X. 

(39) 
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- RI(I) ~8 R*(III): vutx) = %(7/X) - U(T/X) + D(T/~) 2 0 

. 

+dx) = 4U(x) = 2&X) - D(x) 2 o 
(40) 

Ri(I)lX[ Ri(V): lOi = 4UCx) - D(x) + 2Q(X) = 0. (41) 

Of the three cases above, the first inequalities (39) are never satisfied 

in our model; the second inequalities (40) will be satisfied only for x 

sufficiently small. Given arbitrary functions, U, D, and 6, the third 

case (41) will only be satisfied at isolated points and, hence, contribute 

to the maximum only on a set of measure zero. Similar remarks apply 

to RI(V) IEl RI(I). Mutatis mutandis, the case Rt(II1) B Ri(1) will be 

applicable for r/x sufficiently small. Unfortunately, the cases 

R1(I) B Ri(II1) and Ri(III) B Ri(1) are not mutually exclusive, i.e., it 

can be seen that. when 

26 + $D 2 Uat both x and r/x, (42) 

both sets of inequalities (40) are satisfied. We have no choice but to 

explicitly evaluate the integrand and choose the larger. We have 

+(x)6 (;)+$x)D (;) 

I in Ri(1) a Ri(II1) 

(43) 

, $&dlJ(;)+ $D(x,~(~) 

c in R*(III) Cl Ri(1) 
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We next proceed to the case Rt(III) @ Ri(II1): We find 

‘la = 4U - D - 86 > 0, at both x and T/X (44) 

[ Note that this inequality is incompatible with (42). 1 

In Ri(II1) @ RI(V). we find 

10:(x) = D(x) - 4U(x) + 86(x) = 0 > (45) 

which will be satisfied, at most, at isolated points. Similar remarks 

apply to R*(V) @ Ri(II1). 

The case R1(V)E R1(V) would appear to be possible. However, 

it is a saddle point, (See Appendix B). 

In summary, then, the only cases compatible with the “data” of 

Fig. 7 is RI(I) @ Rt(III), R1(III) iX RI(I), and Ri(III) E Ri(II1). We 

present, in Table III, the value of the integrand in each case allowed 

by our model. The upper bound so computed is presented-as curve A in 

Fig. 8. Note that it falls well below the data for almost all x 2 0. 

Again we note that the integrand of our bound provides a bound on the 

doubly differential cross section. 

Finally we would like to indicate how easily the preceding analysis 

may be applied to data which is somewhat different from that shown in 

Fig. 7. Consider, for example, data exactly like Fig. 7 for x 5 0. 3, 

but for x 2 0.3, suppose S = $D and 6 = $j D. Choose U and D as 
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before. Thus, instead of being exactly zero, these distributions are 

quite small. Clearly, the pair (x, T/X) is in Ri@ Rt for all points x. 

So the possible sets are those indicated in Table III for this class. For 

such data, the maximum is unambigiously given by R1(III) m Ri(III) 

for x z 0.12. The upper bound from such a model is also presented in 

Fig. 8 as the curve labelled B. 

We should also remark that, for most input data, bounds such as 

the ones obtained above cannot be saturated by 3 distribution function: 

rather, the bound is the upper envelope produced by all possible 

distributions. 

V. CONCLUSIONS 

It seems clear from the preceding discussion that at least one of 

the following three statements must be correct. 

1. The experimentally observed cross section per nucleon, N, is 

not the scaling limit for the process pN -f p+p-X. 

2. The Drell-Yan formula for pp - p+p-X requires modification. 

3. The colored quark-parton model is incorrect. 

We discuss each possibility in turn: 

(1) There are a number of effects which cause us to doubt that the 

data is the scaling limit of pp - p-p+X. First of all, the experiment 

was done on Uranium, and it is not at all clear how nuclear effects 

distort the cross section. For example, one ought to take into account 

absorption of the proton beam as it passes through the nucleus. It would 
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therefore be useful to do the experiment with several different nuclear 

targets in order to determine more precisely the significance of nuclear 

physics. 
21 Secondly, because the target is large, nearly all secondary 

mesons produced will interact, 
+- 

some of which will produce p p pairs. 

As x increases toward 1, the probability of finding an antiquark in a 

meson is, according to the common wisdom, much greater than in a 

proton; hence as 7 increases, the contribution from processes such as 

rrp -t p-r-+X becomes relatively more important. 22 
Third, there is 

the possibility that scaling has not yet been reached for this process, 

and so similar experiments such as those planned and being carried out 

at NAL at other energies are very important. Finally, of course, it 

is possible that the pi-p+ pair observed has nothing whatsoever to do 

with the process of heavy muon pair production. On this possibility, 

we have no comment. 

(2) Consider now the possibility that the Drell-Yan formula is 

incorrect. This seems to us to likely, for strong interaction effects 

may very well modify the cross section. 
23 

Suppose, for a moment, 

that the only effect of strong interactions is to elastically scatter the 

par-tons forward. Then this would simply change the overall normalization 

of the Drell-Yan expression without altering its form. 9 
To the extent 

that the dominant contribution of strong interactions is diffraction scattering 

in a narrow forward cone, this would remain a good approximation. 

Thus, we might anticipate that the shape but not the magnitude of the 
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Drell-Yan formula is correct. 
24 

Unfortunately, it seems very unlikely 

that the shoulder seen in &e data between T = 0.1 and -r = 0.3 (see Fig. 3) 

could be accounted for in this way, as has been suggested. 25 We 

also want to remark that Feynmani takes a different point of view and 

argues that interactions among wees does not alter the probability of 

finding a hard parton, so the Drell-Yan formula is not modified by 

strong interactions. 

(3) Third, we consider the possibility that the colored quark- 

parton model is incorrect. Certainly, an analysis of the type presented 

here should be performed for other constituent possibilities, such as 

the Han-Nambu model, or models with charmed particles. We suspect 

that the greater the mean-squared charge, the smaller the bound will 

be, so the situation will become even worse in most such models. There 

is also the possibility that the basic parton or free field approach to the 

light-cone simply is incorrect, at least for time-like photons. The data 

from SPEAR on eie- -f hadrons suggests that we should take this 

possibility seriously, but we prefer to wait until we have a better under- 

standing of how scaling behavior should be approached. 

In addition to the theoretical problems found generally in the parton 

model, it seems clear that the reliability of the Drell-Yan formula is 

an important area of theoretical investigation. Furthermore, it is 

clearly important to do lepton pair production experiments on a variety 

of targets over a wide kinematic range in order to get as good an under- 
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standing of this crucial process as possible. If we obtain more confidence 

in the theoretical underpinnings behind deep inelastic pair production, 

then we would suggest that a direct measurement of the doubly 

differential cross section for pp - p-p’ X may be much more sensitive 

to the antiquark distributions for large x than is a measurement of 

neutrino cross sections. In the muon pair production, the signal is 

directly proportional to the probability for finding antiquarks, whereas 

in the neutrino case, it must be obtained as the very small difference of 

neutrino and anti-neutrino cross sections. 

In this paper we have tried to illustrate how a powerful technique 

can be used to obtain very general model independent bounds. Because 

of its intrinsic interest, we have considered heavy lepton pair production, 

but our approach clearly has a wide range of applications. For instance, 

a general study of bounds on neutrino cross sections imposed by the 

electroproduction data should be performed. In addition, these techniques 

can be applied to the exciting area of hadron production at large transverse 

momenta. 
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APPENDIX A 

For a discussion of the tangent cone, we refer the reader to 

Ref. 7, Since our only constraints are p(x) 2 0 and p(x) 5 P(x), the 

tangent vectors h(x) satisfy h(x) = 0 if p(x) = 0 or p(x) = P(x) 

h(x) arbitrary if 0 < p(x) < P(x) 

The only nonzero second differential is 

t2LZ - 4 6(y -7/x) 
6p(x)~p(y) = x 

so 

9” = - 4 1 $ h(x)h 0 

(Ai) 

(A21 

At a local maximum,%’ 5 0. 

In the set I, for example, h(x) and h(T/x) are arbitrary so we can 

certainly choose them of opposite signs to give 3” > 0. Hence, I 

cannot be a local maximum. 
26 
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APPENDIX B 

For protons on neutrons, we must maximize 

1 

F= + ;(x)d(T/x) 
I 

+ $ d(x);(T/x) +d(x)u(~/x) s(x)s(.r/x) +;(x,i(./x) 

1 
II 

+;(x)d(-r/x) 
I 

+$(x)&/x) 

7 

= -t d(x)u(-r/x) +;(x)d(T/x) +-d(T/x);(r/x) 
)I 

- 4-r 
+ ; s(x,s(T/X) + S(T/X&X) 

( 11 W) 

subject to the three constraints LI +; = U, d +i = D, s +s = S plus six 

pooitivity constraints. 

The strange quark problem is precisely as before, but the non- 

strange quarks differ. Neglecting strange quarks for the moment, 

consider 

x A,k)(U-u-i) + XD(D-d-d)+ r~,u+;~fi+ rldd+ VdJ C32) 

we have 

a9 - = 2 hub) [ 
%7/X) +x.(x) + rlu(x) = 0 

1 
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E(T/X) + X,(X) + rj ,(x) 1 =o 
62 5 - =- 
6fii(x) 9x 

d(.r/x) + h&c) + ;u(x) = 0 
1 

(B3) 

aLi?- 5 --- 
da(x) 9x + Xp(x) + 17 ,(x) 

I 
=o 

As before, the interior can be ruled out. If u(x) # 0, i(x) # 0, then 

VAX)‘= i+) = 0 -3 d(T/x) = &T/X) = $D(T/x)+’ vd(-r/x) = r,,(~/x) = 0 

+ u(x) = ii(x) = +J(x). Thus, if u and ; are in the interior at x, then 

d and d are in the interior at r/x. Consideration of the second 

differential on the tangent cone shows that this case is a saddle point. 

Next, consider boundary cases: 

; = 0, U = u 3 fl u 
(x) = :(7/x) - d(T/x)> 0 

u = 0, ; = U 3 iu(x) = d(T/x) - :(7/x) 2 0 

(334) 

: = 0, d = D + id(x) = ;(~/x) - u(-r/x) 2 0 

d = 0, d = Da’ qd(x) = U(T/X) - L&/X) z 0 

Consideration of these inequalities leads to the conclusion that only 

four sets are allowed for the pair ( x, T/X) 

1. ;=d=Oatx, u = d = 0 at T/X 

2. u=d=Oatx, ii =Z=Oat T/X 

3. u=d=Oatx, u=;i=Oat r/x 
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4. u=d=Oatx, ; =d =Oat T/X 

For all four of these cases, the value of the integrand is the same: 

Restoring strange quarks, we find the value of the maximum is 

+ D(x)u(~/x) + $S(x)S(T/x) (B5) 
I I 

If S(x) = 0 for all x, U and D are given by Eq. (11). We evaluate 

this case and plot it in Fig. 2 as the dashed line. Next, we want to 

maximize Eq. (B5) with respect to S, where U and D are given in terms 

of S by Eq. (12). This analysis proceeds essentially as in Eqs. (15) 

through (19 ). We find that, provided : c/f; > 11135, only Boo 

and B 
Ii 

are allowed, so that the maximum is given by 

1 

M,(x) , where 

7 

(B6) 

r 
& ~f~x)-f$jt4f~(T/x) - fy2p(,/,J 

+ f ZTx)- fY$) 
c Jlc 

4 fT (T/X) - +/x I (Boo) 

Mn(x;) = Max 

c 
4.f yn(x) - fy,p(x) 

2 IC 4fYn T/X) - fT(T/X) 
2( 1 (Big’ 

We evaluate this and plot it as the solid line in Fig. 2. We see that the 

proton-neutron bound falls well below the proton-proton bound. 

If we can neglect effects due to binding of nucleons, then a nucleus 
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of Z protons and N neutrons (N + Z = A) will have an average cross 

section per nucleon equal to 

0 $ (PP - &-x1 + 
0 
g pn- t.l+p- x ) (B7) 

For the Uranium target used in the Brookhaven experiment, 
11 

we have 

Z = 92, N = 146, A = 238 so there is a considerable neutron excess. 

The upper bound on the average cross section per nucleon can be com- 

puted from Eq&. (B7) and from the curves B in Figs. (i) and (2). This 

bound is plotted En Fig. ( 3 ) against the Brookhaven data. 
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APPENDIX C 

We summarize below formulas for neutrino interactions in the 

quark model. With spin $ quarks only, vN-+ P-X and ;N + p’X have 

scaling forms: 

do 
2 

- = 
bdy 

GrME 2x [ G+(~)(1-y)~ + G-(X)] 

Proton 

Gyp =; G’“P = u 
+ + 

GVP = d cos2 Bc + S sin.’ 8 GVP = ii cos2 ec +S sin 
C 

Neutron 

G:” = d Cl” =d 

G w = u cos’ Bc + s sin2 Bc G 
in = i cos2 ec + S sin’ Oc 

Sum of proton plus neutron: Gj - Gjy +Gj,” i 
1 1 ’ 

i = f, -; j = v, i 

G: 
=;+i G”+ =u+d 

GV = (u +d)cos2 Bc +2 s sin2ec G+” = (ii +d)cos2 Bc + 2 S sin2 0 
C 

Sum of neutrino plus antineutrino: Gi = Gy + Cl , i = +, - 

G+=U+D G = (U+D)cos2 Bc + 2 S sin2 Bc 
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Electroproduction Scaling Functions: 

=fYP _ 4 
VWvn 

2 fyn- 4 
X 2 

-5U+$D+$S -= 
X 2 

-,D++J+$S 

sum of proton plus neutron: f ‘2” =+D)+$S 

Inverting: 

U+D=G+ S=?.fy 5G 
2 2 -z t 

U = +G++ $(fYP- fyn 
2 2 ’ 

D = $ G+ -; (fy- f.‘r) 

Constraints: 

G, - G- = (6G+ - 9fl) sin2 Bc 

Gyp - Gun = (Cwn _ GYP 
+ + )cos2 ec 

Singly Differential Cross Section: 

where 

de jk 
-= G2ME 8x 
dx 

-13 Gjk 
Tl 

G 4+4- 
jk = 2. Gjk + LGjk j =v,v; k =p,n 

Sum of proton plus neutron: cj =.jp +Gj” j = v,; 

Knowledge of f 3: and GV + G” determines U + D and S: 
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U + D = (i - 9 sin20 )-’ 
2 c [ 

GY + GV - y sin2 ecf z] 

S = (1 - tsin2 ec) -* [;(I - i sin2 e )f; - $(G”+G’)I 
C 

Note also 

u+d =c9 cos~ec-l )bGvcos2 ec-G;+z (ii -3cos2ecs)sin2ec] 

i+d =(9 cos~ec-i)~6;cos2ec -G’+ s(s- 3cos2ec~)sti2ec] 

Inlimit 0 = 0, 
C 

u+d =+[3GY-G’] 

;+d =$[3G%] 

U+D=GV+GV 
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APPENDIX D 

The only non-zero second derivative is 

62Y 
2 

e. 

6qi(x)6$(Y) 
= 1 s(y- ;) 

X 
‘(D1) 

The tangent cone is determined from the constraint equations. 

Corresponding to the six distributions u, ;, d, d, s, s, we identify 

components of a tangent vector h = (hu, hu, hd, L,, hs, hs). The 

four equality constraints lead to the four conditions. 

hi(x) + hi(x) = 0 i = u, d, s 

U32) 

lgx, + i;,(x) = 0. 

Hence the tangent cone is, at most, two dimensional. 

The second differential is 

Y”= Ii 

I 

ci2Y 
h.(y) dxdy = 

i, j 
hi(X) 6qi(X)6qj(Y) J 

7 
1 

= z e.2 

I 

$ hi(x) $(7/x) @D3) 
i 

1 

7 

If we choose hd(x), hs(x) as independent components and eliminate the 

other four components in their favor, we find 

9” = - $j $ Ehd(x’hd (;) +hs(x)hs (:))I 

7 

(D4) 
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Whenever one of the inequality constraints, qi(x) 2 0, ii(x) 2 0. 

becomes an equality, then there is an additional constraint on the 

tangent cone. Specifically, whenever qi(x) = 0, we must have hi(x) = 0. 

In the text, we remark that, for strange quarks, the case C I8 C 

is a saddle point. To see this is easy, for, since neither s nor s 

vanishes at x or r/x, we can choose the independent component hs 

arbitrarily at both x and -r/x. Consequently, we may choose all other 

components of the tangent vector to be zero and choose hs(x), hS(r/x) 

to givep’ = -I ? hS(x)hS(r/x) > 0. 26 Hence C E2 C cannot be a 

local maximum. 

The case R$(V)B RI(V) has u, ;, d, d # 0 at both x and T/X. 

Hence, one can choose non-zero independent components hd(x), hd(~/x), 

such thatp’ > 0, so this case is also not a maximum. 
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TABLE I 

Alternatives for Region RI 

Case u u d ;1 Consistent with Model 

I u 0 D-Q (3 Yes 

II 0 U D+U-& G-U No (d< 0) 

III u-g 6 D 0 Yes 

IV U+D-kj 6-D 0 D No (II< 0) 

V #O #O $0 #O Sometimes 

In all cases, we have s + s = S. 
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TABLE II 

Range of r Subdi visi 

a<~<b 

a b 

1. 0.6 1 

2. 0.36 0.6 

3. 0.3 0.3 

4. 0.18 0.3 

5. 0.09 0.1 

6. 0 0. c 

x1 
<x<x 2 

x1 x2 

7 1 

710.6 1 

fi 0. 6 

0. 6 1 

d-7 0.6 

T/O. 3 1 

0.6 T/O. 

&-- 0.6 

0. 6 1 

710.3 0.6 

&- T/O, 

0.6 1 

0. 3 0. 6 

6 0.3 

,3 

.3 

ion 

r/x2 < 71x < r/x I 

7/X 2 71X I 

7 1 

7 0.6 

7iO.6 6 

7 710.6 

r/o. 6 &- 

7 0.3 

0.3 T/0.( 

710.6 dT 

7 710.t 

710.6 0. 3 

0. 3 dT-- 

7 T/0.( 

710.6 T/O.: 

710.3 6 

Class 

R3@R3 

R3@ R2 

R2@ R2 

R3= R2 

R2m R2 

R3@ R1 

R3m R2 

R2= R2 

R3= R1 

R2@ R1 

R2@ R2 

R3@ R1 

R2@ R1 

RIB R1 
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TABLE III 

Value of Integrand in Permissible Cases 

(we suppose &- 5 x 5 1 in the following. ) 

Case 

R3 Cc3 R3 

R3 = R2 

R2 = R2 

R2 c3 R4 

R3 = R1 

Value of Integrand 

0 

0 

$ S(x) %7/x) 

gu(x)&/x) + $S(x)S(h) 

$U(x) GT/X) 

R1 m R* MAx+ S(X)S(T/X) 
The value of the maximum MAX is determined as follows: 

(1) If U 2 2Q + $ D at x and T/X, then we choose case Ri(II1) Ix[ Rt(II1) 

where 

MAX = $ U(x) - Q(x) @T/X) +$6(x) U(T/X) - Q(T/x) F-1 r 1 
(2) IfUs 2Q+aD atx 

U> 2Q+$D at r/x 
, then choose Rt(II1) m Ri(I) where 

MAX = $ D(x) Q(T/x) + $Q(x) U(-r/x) 

1 
(3) IfU> 2Q+-D atx 4 

f Ui2Q+$D atT/x ’ 
then choose Ri(1) @I Ri(II1) where 

MAX = +(x, D(T/x) + $U(x) Q(*lx) 
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TABLE III (Contd. ) 

If U 5 2G + $D at both x and 71x, choose the larger of the two values 

of MAX given in (2) and (3) above. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Upper bound for pp -f p*+p-X assuming a 

knowledge of v W2 for protons and neutrons 

(solid line ). The dashed line is the bound 

with,+ additional constraint, that s(x) = 

S(x) = 0. 

Same as Fig. 1, for the process pn - p+p-X. 

(A) Upper bound for process pU - p+p-X 

calculated as a weighted average as 

described in the text. 

(13) Same bound corrected to include detection 

efficiency at BNL. 

(C) 28 GeV/c data from Brookhaven (Ref. ii). 

Momentum fraction carried by quarks (u + d) 

and antiquarks (< + z). (Taken from ‘Fig.. 4. 23 

of Ref. 13. ) 

Momentum fraction carried by each species of 

quark xU, xD, and xS. (Deduced from Fig. 4 

and data from Ref. 10. ) 

The simple model of Eq. (22) and (23 ) (dashed 

line) for the behavior of the muon pair cross 



Fig. 7 

Fig. 8 
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section for large 7 compared with the 

Brookhaven data. 

Distributions for U, D, S and G motivated by 

the Gargamelle data. 

Upper bound (A) obtained from electroproduction 

data plus Fig. 7. Upper bound (B) obtained 

by relaxing conditions on antiquarks. ‘(See text 

fbr,‘disatission. ) 
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